Partition-Based Hardware Transactional Memory for Many-Core Processors

نویسندگان

  • Yi Liu
  • Xinwei Zhang
  • Yonghui Wang
  • Depei Qian
  • Yali Chen
  • Jin Wu
چکیده

Transactional memory is an appealing technology which frees programmer from lock-based programming. However, most of current hardware transactional memory systems are proposed for multi-core processors, and may face some challenges with the increasing of processor cores in many-core systems, such as inefficient utilization of transactional buffers, unsolved problem of transactional buffer overflow, etc. This paper proposes PM_TM, a hardware transactional memory for many-core processors. The system turns transactional buffers that are traditionally private to processor cores into shared by moving them from L1-level to L2-level, and uses partition mechanism to provide logically independent and dynamically expandable transactional buffers to transactional threads. As the result, the solution can utilize transactional buffers more efficient and moderate the problem of transactional buffer overflow. The system is simulated and evaluated using gems and simics simulator with STAMP benchmarks. Evaluation results show that the system achieves better performance and scalability than traditional solutions in many-core processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault-Tolerant Execution on COTS Multi-core Processors with Hardware Transactional Memory Support

The demand for fault-tolerant execution on high performance computer systems increases due to higher fault rates resulting from smaller structure sizes. As an alternative to hardware-based lockstep solutions, software-based fault-tolerance mechanisms can increase the reliability of multi-core commercial-of-the-shelf (COTS) CPUs while being cheaper and more flexible. This paper proposes a softwa...

متن کامل

Memory Isolation in Many-Core Embedded Systems

The current approach to developing mixed-criticality systems is by partitioning the hardware resources (processors, memory and I/O devices) among the different applications. Partitions are isolated from each other both in the temporal and the spatial domain, so that low-criticality applications cannot compromise other applications with a higher level of criticality in case of misbehaviour. New ...

متن کامل

A Waiting Mechanism with Conflict Prediction on Hardware Transactional Memory

Lock-based thread synchronization techniques have been commonly used in parallel programming on multi-core processors. However, lock can cause deadlocks and poor scalabilites, and Transactional Memory (TM) has been proposed and studied for lock-free synchronization. On TMs, transactions are executed speculatively in parallel as long as they do not encounter any conflicts on shared variables. On...

متن کامل

A Hardware/Software Approach for Alleviating Scalability Bottlenecks in Transactional Memory Applications

A Hardware/Software Approach for Alleviating Scalability Bottlenecks in Transactional Memory Applications by Geoffrey Wyman Blake Chair: Trevor N. Mudge Scaling processor performance with future technology nodes is essential to enable future applications for devices ranging from smart-phones to servers. But the traditional methods of achieving that performance through frequency scaling and sing...

متن کامل

Transactional Synchronization Extensions

The increasing number of cores every generation poses challenges for high-performance in-memory database systems. While these systems use sophisticated high-level algorithms to partition a query or run multiple queries in parallel, they also utilize low-level synchronization mechanisms to synchronize access to internal database data structures. Developers often spend significant development and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013